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Abstract--The generation and transmission of planar, thermoacoustic (TAC) waves by the heating of a 
quiescent, isothermal, semi-infinite, gaseous medium's boundary is investigated theoretically. For step and 
gradual changes in the boundary temperature of a Pr = 3/4 gas, long- and short-time asymptotes are 
derived for the pressure, velocity and temperature fields and for the wall heat flux. Then the method of 
Laplace transform with numerical inversion is used to solve the linearized equations for general wall 
heating conditions. By comparing the Laplace transform predictions with the asymptotic results and with 
experimental data, the numerical scheme is verified and found to be highly accurate. Finally, the nonlinear 
equations are solved numerically to assess their effect on wave characteristics and to determine the 

conditions under which the linear approximation is adequate. 

1. INTRODUCTION 

When the boundary of a compressible material (i.e. 
gas) is subjected to a rapid temperature change, a 
sudden expansion of the material will occur, which in 
turn will generate a pressure wave. These thermally- 
generated waves are referred to as thermoacoustic 
(TAC) waves. They propagate at approximately the 
speed of sound within the medium and gradually 
damp out because of heat and viscous diffusion. 

Early interest in thermoacoustic waves was motiv- 
ated by the desire to understand their contribution to 
sound generation (see, for example, the reviews of the 
literature on Rijke and Sondhauss acoustic oscil- 
lations by Feldman [1, 2] and on other sources of 
thermoacoustic noise by Dowling [3]). More recently, 
the contribution of TAC waves to heat transport has 
attracted interest in the space science community (i.e. 
[4-10]). TAC waves enhance heat transfer by con- 
verting thermal energy into compression work and by 
inducing convective motion away from the heated 
surface. This mode of heat transport has been deemed 
to be of particular importance in the space environ- 
ment, where other modes of transport, such as natural 
convection, may be absent. 

Our purpose in pursuing the present investigation 
was two-fold. We not only were interested in bettering 
our understanding of the contribution of TAC waves 
to the heat transfer process in general, but also in 
exploring the possible role of TAC waves in two 
instrumentation-related applications. More specifi- 
cally, we were interested in the potential use of thermal 
actuators for the generation of high amplitude acous- 
tic waves. By measuring the speed of propagation of 
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such waves, one can infer various gas properties such 
as average molecular mass, composition or tempera- 
ture. Additionally, we wished to evaluate the con- 
tribution of TAC waves to noise problems, which 
adversely affect the performance of thermal con- 
ductivity sensors measuring the conductivity of flow- 
ing gases. These sensors are often used in gas chro- 
matography, and they typically consist of a constant 
temperature filament embedded in a constant tem- 
perature channel. The thermal conductivity of the gas 
is inferred from the filament's power consumption. 
When the flowing, colder gas encounters the hot fila- 
ment, a sudden expansion of the gas occurs which, in 
turn, induces TAC waves. These continuously gen- 
erated waves cause time-dependent heat transfer from 
the filament and thus adversely impact the thermal 
conductivity measurement. Before addressing the 
somewhat more difficult problem of TAC waves in a 
moving gas, we study here the simpler problem of 
TAC waves in a quiescent medium. 

There are just a few experimental studies that focus 
on TAC waves. At a point inside a closed cylinder, one 
end of which was subjected to a sudden temperature 
change, Parang and Salah-Eddine [10] measured the 
temperature as a function of time and demonstrated 
that TAC waves enhance thermal mixing. BroWn [11] 
and Brown and Churchill [12, 13] measured pressure 
as a function of time. However, no direct measure- 
ments of heat transfer were made. 

Analytical investigations of TAC waves date back 
to Lord Rayleigh [14], who carried out a linear analy- 
sis. This analysis was expanded upon by Trilling [15], 
who used the Laplace transform method to obtain a 
long-time asymptote for a thermally induced pressure 
wave in a semi-infinite medium subjected to a step 
change in wall temperature. More recently, Kassoy 
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NOMENCLATURE 

speed of sound a 
the magnitude of the change in the r 
wall's temperature ~( 

specific heats at constant pressure 
and at constant volume 
pressure 
Prandtl number 
wall heat flux 
Laplace variable 
time 
temperature 
wall temperature 
coordinate normal to the wall 
velocity in the y direction. 

Greek symbols 
thermal diffusivity 

7 ratio of specific heats 
~1 .V/2x~t 
p dynamic viscosity 
v kinematic viscosity 
p density 

Bromwich line's location 
time delay 
norm determining the difference 
between two functions. 

Superscripts 
* dimensional quantities 

transformed variable. 

Subscript 
0 quiescent conditions. 

Abbreviations 
ILT inverse Laplace transform 
FD finite difference 
LW linear wave 
NLWTI nonlinear wave with temperature- 

independent thermophysical properties 
NLWTD nonlinear wave with temperature- 

dependent thermophysical properties 
TAC thermoacoustic wave. 

[6] and Radhwan and Kassoy [9] used boundary layer 
analysis to investigate one-dimensional, nonlinear 
TAC waves transmitted in a confined medium. The 
aforementioned analyses covered only limiting cases. 

In order to obtain general solutions, a number of 
researchers [4, 5, 7, 8, 11] have studied numerically 
one- and two-dimensional TAC waves in a confined 
region. All these investigators used finite differences 
with the convective derivatives being approximated 
by a first-order upwinding scheme and with crude grid 
spacing relative to the length scale of the acoustic wave 
at short times. The results of all the aforementioned 
numerical simulations are in good agreement with 
each other. Unfortunately, as Brown [11] noted, the 
numerical results do not resemble his experimental 
observations. Among other things, we will investigate 
here whether this lack of agreement between exper- 
iment and theory is due to deficiencies in the math- 
ematical model or due to numerical imprecision. 

In this paper, we investigate theoretically one- 
dimensional, TAC waves transmitted in a semi-infinite 
medium. In a subsequent paper [16], we study TAC 
wave transmission in a confined medium. Here, we 
start by studying the linear problem in a semi-infinite 
medium using the Laplace transform method. First, 
we consider TAC waves generated by a step change 
in the wall temperature. While such step changes are 
physically unrealistic, it is useful to examine this ideal- 
ized situation since it enables us to generate long- and 
short-time asymptotic approximations. The long-time 
asymptotes are also valid for situations in which the 
wall has thermal inertia and its temperature increase 
is gradual. Next, we invert the Laplace transform 

numerically and verify the numerical method by com- 
paring its predictions with the asymptotic solutions. 
The numerical inversion technique allows us to com- 
pute wave propagation for general wall temperature 
variations. This numerical method has the advantage 
over finite differences/elements that it is not sensitive 
to grid spacing and artificial dissipation. Conse- 
quently, it allows one to obtain highly accurate results. 
Then, we investigate the effect of the wall's heating 
rate on the nature of the TAC waves. Subsequently, 
we compute the nonlinear TAC waves using finite 
differences and finite elements. Unfortunately, to 
maintain high precision, these schemes require very 
small time-steps. This limits the computations to rela- 
tively short times. The nonlinear results are compared 
with the linear theory's predictions to assess the effect 
of nonlinearities on the wave characteristics and to 
establish the conditions when nonlinear effects can be 
neglected. Finally, we compare our theoretical results 
with Brown's [11] experimental data. 

2. THE MATHEMATICAL MODEL 

Consider a rigid wall in contact with a compressible, 
ideal gas (Fig. l). The gas is initially quiescent at a 
uniform pressure (P*) and temperature (T*). Proper- 
ties corresponding to the quiescent state are denoted 
by a subscript zero. Superscript (*) denotes dimen- 
sional quantities. As a result of a change in the 
boundary temperature, T*(t), deviations from 
quiescent values will occur. We denote the non-dimen- 
sional velocity, density, pressure and temperature 
deviations by V, p, P and T, respectively. 
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is the length scale, where #* is the viscosity. 
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is the time scale. We neglected buoyancy since, even if 
buoyant forces were present, the time scale associated 
with the buoyant flow would be much larger than that 
of the acoustic wave [5]. 

Fig. 1. Schematic description of the problem and the coor- 
dinate system. 

The continuity, momentum, energy, and state equa- 
tions for one-dimensional, TAC waves are, respec- 
tively, 

~ +  = 0 ( l )  
OV O(pV) 
~y + Oy 

DV 1 OP 1 63 Vft*(T) OV 1 
(1 +p)  D~- - 7 0y + (2) 

DT 0V 
(1 + p) ~ -  + ( 7 -  1)(P+ l) Oy 

3 0 [ k * ( T ) ~ r l +  . * ( r )  (o7/: 
- 4 P r O y  L k* ~yJ (7 -1 )  .-~-o \OyJ (3) 

and 

P = p+ T+pT. (4) 

The boundary and initial conditions are : 

T(0, t ) -  Tw(t) = V(0, t) = T(oo, t) = V(oo, t) = 0 

(5) 

and 

63T 63V 
T(y,O) = 63r 0',0) = V(y,O) = ~ ( y , 0 )  = O. (6) 

In the above 

D 0 0 
D~ = at + V~y), 

Pr is the Prandtl number ; and 

c*  
7 -  c*  

is the ratio of the specific heats, which we assumed to 
be temperature-independent. For example, for helium 
between 3 and 900 K, C* is constant ; and for nitrogen 
between 220 and 600 K, C* changes by about 4% 
[17]. All variables were nondimensionalized. P* is the 
pressure scale. T* is the temperature scale, p* is the 
density scale, a* = x/TRT*, the sound speed in the 
undisturbed gas, is the velocity scale. 

3. THE LINEAR MODEL 

In the first part of this paper, we assume that the 
TAC wave causes only small disturbances in the 
quiescent state. Thus, we neglect nonlinear terms in 
the equations. The conditions when the linear model 
is valid will be established later in the paper. The 
nondimensional, linearized equations are : 

Op 0V 
0V + ~ = o (7) 

8V 1 OP 1 632V 
(8) 

Ot 7 Oy 7 03 ,2 

8T 00 1 02T 
6q 7 - -  (],' - -  l )  ~- /  - -  4 (9) ~Pr Ov 2 

and 

P = p +  T. (10) 

The velocity (V) and density (p) can be eliminated 
from equations (7)-(10) to obtain two coupled equa- 
tions for the pressure and temperature : 

(7_(7_l)4pr)632p ~2p 
63t 2 Oy 2 

6~3p 4 e ' T  
OY 20t y ( l - 3 P r ) ~  = 0 (11) 

4 ~ 0 3 T  = (~Pr+7) G4T 
Oy 4 Oy 4 Ot ~PrT o y ~ t  ~v 2 Ot 2 

-~PrT ~t (12) 

Equations (11) and (12) are also coupled through the 
boundary conditions, which we do not write explicitly 
here. 

The special case of Pr = 3/4 affords a simplification 
in the mathematical treatment, since for Pr = 3/4 the 
temperature equation (12) can be factored [15]. Many 
gases have Prandtl numbers around 3/4 (i.e. at 300 K, 
air and H2 have the Prandtl number of 0.71 ; that of 
CO2 is 0.77). Therefore, we shall restrict the discussion 
in this paper to Pr = 3/4. For Pr = 3/4, equation (12) 
can be rewritten as : 

and 

04 T 0 5 T 
+ - -  
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where 

and 

( L I L 2 ) T =  0 (13) 

02 ~2 03 
L I - ~12 ~y2 ~y2 ~1 

~2 

L2 = 7 Ot @2" 

Next, T is decomposed into pressure mode, Tt,  and 
thermal mode, T 2  

. ~)qol 
T =  T I + T  2 = (l - -7 ) - -~ t  q-)'r.p2 (14) 

where 

L ~ ( ~ p l ) = 0  and L2(cp2)=0.  (15) 

All other variables are written as a superposit ion 
of  these two modes, i.e. P = P~ + P2, P = Pl + P2 and 
V = V~ + V2, where 

= (  02 - ? ' ~  ~, P ~ = O  
PI \@2 

Pl  = - -  ~3t ~01 P2 = --)'¢P2 

0 
VI = 7-~01 V, = (16) cy _ ~ ~P2- 

Applying the Laplace t ransform to the equations 
(15) with the initial condit ions (6), we obtain 

(.-~P2 s 2 ~ l = ( s + l )  c720~ and 7s02 = -  (17) 
E,z &.2 

where s is the Laplace variable and the t ransformed 
quantities are denoted with a tilde. 

By solving these equations (17), we obtain the trans- 
formed temperature,  velocity and pressure : 

/~ = (1 - 7 ) s O ,  +7~2 (18) 

8~2 [7 ~ ' + -  (19) 
= ?~ i~y 

and 

where 

O, (y , s )  = 

and 

~ d y ,  s) = 

~2q3~ 
p = - -  - ? s O ,  ('~), 2 

l + s  ~ 

(7-- 13 x/x (1 + s ) + ~ '  

(21) 

1 
Tw(s) 7 e x p  ( _ y x  ~/~). 

(~ -  1)@0 +s) + ~ , ,  

For  example, the Laplace transform for the pressure 
is 

P(y,  s) = ~ K i s )  
(7-1)~/[,,(1 +s )  + , /> ,  

X ex 
x / l + s  

and the inversion integral for the pressure is 

(23) 

| Ia +i'r 
P(y,  t) = 2~zi if(y, s) e" ds 

- t t  
(24) 

where rr/> 0 is the location of the Bromwich line. 

4. A STEP-CHANGE IN WALL TEMPERATURE: 
LONG AND SHORT TIME ASYMPTOTES 

We derive long- and short-t ime asymptotic  solu- 
tions for the TAC wave in a semi-infinite medium 
subjected to a step change of magnitude A in the wall 
temperature : 

= {~ for 1~<0 = A. 
T~(t)  for t > 0 and T~(s) s (25) 

Although an instantaneous change in the wall tem- 
perature is not realizable in practice, this case is still 
interesting because it allows us to generate asymptotic  
approximat ions  which are also valid when the increase 
in the wall temperature is gradual.  

4. I. Long-t ime asymptote  

A long-time pressure asymptote  was originally 
obtained by Trilling [15]. Unfortunately,  Trilling's 
derivation suffers from a number of inaccuracies 
which we correct below. 

For  long time t, most  of the contr ibution to the 
inversion integral comes from the vicinity of the singu- 
larity with the largest real part  (s = 0). Thus. 

A-, '  7 f i ' "  
P(v t) ~ 2~zi 

(20) 

( ;) r ds" 
× exp s ( t - v ) +  ~ - -  (t--+ c£:). (26) 

-v/S 

Since there are no singularities in the RHS of the 
complex s plane, we select a = 0 and substitute s = i2 
to obtain 

~z j .  

( x cos 2 ( t - y ) -  4 j r . #  ~ = z . O ' , t ) + Z 2 ( y , t )  (27) 

(22) where [18] 
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X~ (y, t ) = ~-~ ((t--Y)2'~ TM 

× exp(  (Y-t)2"~I4 ,14---{(Y-t)2) 
~ , ) -  t, 4y ) 

sgn ( t -y )  
((' i y~ 2 ~ TM 

%2(y,t)= 2 t ~ y 2 / /  

× exp / 
(t--y) 2) ,  I'(t--y) 2\ ) ' " 4 t ~  ) 

and I± 1/4 are the modified Bessel functions of orders 
( + ~). Note that in Trilling's expression [equation (21) 
in his paper], the phase ~/4 is missing and there is an 
error in the amplitude. Equation (27) provides an 
approximation for the pressure field valid for all y. 

When (y-t)Z/4y << 1, equation (27) can be sim- 
plified further to yield the local approximation for the 
wave's peak : 

F(~) ( 2~( t -y )  
P(y, t) ~ A 2i,,4yli ~ 2rr _1 + x/f(r(~)) 2 

+o((t-Y)7/2~k~jjexp( (Y-t)2"~yy ,]. (28) 

Similarly, we obtained expressions for the long-time 
temperature and velocity asymptotes (for details of 
the derivation, see ref. [19]) : 

7 - 1 p (  v, t) + l _erf (Y x f  T/~ 
T(y,t) ~ ~,' . \2,/7) 

and 

(l ~ ~3) 

(29) 

1 
1 ~ e x p (  7y2'~4t V(y , t )~ -e ( y , t )  , ( t ~ )  

I 

(30) 
where P(y, t) is given in equation (27) and erf is the 
error function. 

The long-time asymptote for the heat flux was 
obtained by computing the transformed flux and then 
inverting the resulting expression to obtain 

A 7 q(t) . . . .  (31) 
> = 0  

Equation (31) shows that the heat flux is larger by a 
factor of , ~  than the pure conduction heat flux in 
an incompressible medium, q(t)= A(zt) -I/z. This 
increase in heat transfer is due to the conversion of 
heat into compression work resulting from the ther- 
mal expansion of the gas. 

To see where this augmentation in heat transfer 
comes from, it is instructive to obtain equation (31) 
directly from equations (7)-(10). At long time (t >> y), 
the pressure P ~ 0 and the density p ~ - T  [from 

equation (10)]. Upon substituting p and Pr = 3/4 in 
equation (9), we obtain 

0 T  02T 

7 c?t Oy 2" 

The heat flux predicted by this equation is given in 
equation (31). Thus, the heat transfer in the com- 
pressible gas is equivalent to the heat transfer in an 
incompressible gas with the thermal capacity 
increased by a factor of 7. 

4.2. Short-time asymptote 
Next, we obtain short-time asymptotes (t --. 0). The 

procedure consists of expanding the integrand in 
equation (24) in a series of negative powers of the 
Laplace variable, s. We omit the details of our deri- 
vation and refer the interested reader to Huang [19]. 
The short-time approximations for the temperature 
field, velocity field, and wall heat flux are : 

T(t,y) ~ A{~l(q)-t(~3(r/)-~3(x/Tq))} +O( t  2) 

(32) 

x/~ , t 
V(t,y) ~ A~(;2(r l ) - -~ : (qx fT) )+O( t )  (33) 

U , - I )  - -  

and 

where 

s ',+o,, D q(t) ~ ~ + - - -  
~/1~ + 1 

(34) 

and 

Y 
q = 2 ~ t t  ~(~/) = 1-ef t (q)  

2 
~2(n) = - ~ e  " -2qff,(q) 

For very short times, the phenomenon is dominated 
by conduction; (~(~/) is the conductive temperature 
field and the first term in equation (34) is the con- 
ductive heat flux. 

5. A GRADUAL CHANGE IN WALL 
TEMPERATURE: LONG AND SHORT-TIME 

ASYMPTOTES 

Thus far, we have considered TAC waves generated 
by a step change in the wall temperature. In practice, 
as a result of the wall and heater thermal inertias and 
heat losses to the environment, it is not possible to 
generate a step change in the wall temperature. We 
approximate the dependence of the wall temperature 
on time by the exponential expressions 
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and 

iPw(S) = A sz + 1 (35) 

where r is the heating process' time constant. A step 
change in the wall temperature (Section 4) cor- 
responds to z = 0. 

5.1. Short-time asymptote 
To compute short-time asymptotes, we utilize a 

technique similar to the one described in Section 4.2. 
See ref. [19] for details. For  example, the short-time 
asymptote (t/z << 1) for the wall heat flux is 

4 ' 

(36) 

Witness that q(0) = 0. This is in contrast with the less 
realistic case o f  a sudden jump in the wal l  temperature 
[r = 0, equation (34)] which predicts q(0) = oo. 

5.2. Long-time asymptote 
The long-time behavior of  the case with r > 0 is 

similar to that of  the case with r = 0. Below, we 
present the long-time asymptote for the heat flux for 
z > O ,  

xl nt \ r /  \ t /  

where R(x) = 2x~ F, (1, ~ , - x )  and (~F0 is Kummer ' s  
confluent hypergeometric function [20] which we 
evaluated with the aid of  Mathematica [21], whose 
notat ion we are using here. Witness that R(0) = 0, 
thus for r > 0, the long-time asymptote gives quali- 
tatively correct results for all times. For  large values 
of  t/T, the expression for R(x) can be further simplified 
to 

1 3 15 105 
R(x) ~ 1 + ~ + 4x z + 8x 3 + 16x4 +O(x- 5). 

6. NUMERICAL INVERSION 

Closed form inversion is possible only in the asymp- 
totic limits of  short and long times and for relatively 
simple wall temperature histories. In order to be able 
to deal with more general cases, we resort to numerical 
inversion. We use the F O R T R A N  routine ACM-Alg.  
219 [22], which utilizes a truncated Fourier  series 
method to compute the inversion integral. This tech- 
nique has the advantage that it allows one to compute 
the required variables at any location and at any time 
without having to compute the entire flow field as 
would be the case if  one were to use finite differences 
or elements. It is also free of  numerical dissipation 

errors which plague many numerical techniques and 
cause artificial broadening of  the acoustic signal (see, 
for example, Brown [11]). The discretization error of  
the numerical inversion is given in ref. [22]. 

In order to compute the inversion integral at any 
given O', t), one needs to select the location (cr) of  the 
Bromwich line. Since the integrand is free of  singu- 
larities in the RHS of the complex (s) plane, we set 

= 0. We did, however, verify that the computational 
results are independent of  the location of  the Brom- 
wich line by integrating for a = 0.01 and 0.1. As long 
as a < 1, identical results were obtained. For  a > 1, 
an overflow error resulted. We also verified that the 
computed results were independent of  accuracy speci- 
fications required by the numerical code. 

Finally, we verified the code by comparing the 
numerical inversion with an analytical one. Equation 
(26) has an exact invert [equation (27)]. The relative 
difference, 

P . . . . .  teal(Y, t) --P~nalytic(Y, t) 
~:(y,  t )  = 

PanalyUc (Y, t) 

between the numerical and analytical inversions of  
equation (26) is depicted in Fig. 2 as a function of  
0 ')  for nondimensional times t = 10, 20 and 30. The 
relative difference e was always smaller than 10 6 (or 
10-4%), which is about  the same as the accuracy we 
specified in the code. Figure 2 demonstrates that the 
numerical inversion produces reliable results for the 
type of  problems under consideration in this paper. 

7. LINEAR TAC WAVES RESULTING FROM A 
STEP CHANGE IN WALL TEMPERATURE 

i f=0)  

In this section, we describe the pressure, velocity 
and temperature waves in a semi-infinite medium and 
the wall heat flux resulting from a step change (r = 0) 
in the wall temperature. We use numerical inversion 
of  the Laplace transform and, when appropriate, we 
compare the numerical results with long- and short- 
time asymptotes. 

Figure 3 depicts the pressure wave (P/A) as a func- 
tion o f y  for nondimensional times 10, 100 and 1000. 
The solid lines and circles describe, respectively, the 
numerical (exact) solutions and the long-time asymp- 
totes. For  t < 100, the asymptotic solution over- 
predicts the height of  the pressure peak. As time (t) 
increases, the numerical and the asymptotic solutions 
get closer. At t ~> 103, there is no detectable difference 
between the asymptotic and exact solutions. The 
waves are characterized by a steep front and a rela- 
tively long 'tail ' .  The steep front results from the 
sudden expansion due to an instantaneous increase in 
the wall's temperature. As time increases, the wave 
peak broadens. The broadening is proportional 

to the molecular diffusion length, ~/v*t*, where v* is 
the kinematic viscosity. This feature is somewhat 
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inversions of the asymptotic expression for the TAC pressure wave in a semi-infinite medium as a function 

ofy for times t = 10, 20 and 30. 

P 

A 

0.40 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00 

l ong - t ime  Gsymptote 
numerical result 

3 4 2 3 4 
1 01 1 0 2 

y 

2 3 4 
1 03 

Fig. 3. The normalized pressure resulting from a step change in wall temperature is depicted as a function 
ofy for times t = 10, 100 and 1000. The line and circles describe, respectively, 'exact' numerical and long- 

time asymptotes. 

obscured in Fig. 3 because of  the logarithmic scale 
used for the abscissa (y). 

The pressure wave's amplitude as a function of  time 
is depicted in Fig. 4 by the curve denoted z = 0. The 
circles and x s correspond, respectively, to the numeri- 
cal and long-time asymptotic results. The solid lines 
are least-square curve fits. The amplitude of  the 
pressure wave decreases in proport ion to the inverse 
fourth root of  time (or distance). The numerical results 
are in excellent agreement with the asymptotic ones. 

Figure 5 depicts the velocity, V/A, as a function of  
y for times t = 0.1, 0.5, 1, 4, 10, 30, 50 and 100. To 
accommodate  the expansion of  the gas due to the 
increase in the temperature, the velocity is always 
directed in the positive y direction and its peak is 
synchronized with the pressure peak. Figure 5 also 
depicts short-time asymptotes [equation (33)] for 
t = 0.1, 0.5 and 1 (dashed lines) and the long-time 

asymptotes [equation (30)] for t =  30, 50 and 100 
(dotted lines). For  t = 0.1, there is excellent agreement 
between the short-time asymptote and the exac~ solu- 
tion. For  t = 0.5 and t = 1, there are, respectively, 
about  a 10 and a 25% difference between the short- 
time asymptotes and the exact solutions. The numeri- 
cal solution and the long-time asymptote converge as 
the time increases. The magnitude of  the velocity peak 
increases from close to zero, next to the impermeable 
wall (y = 0), to a maximum at y ~ 5, and then it 
decreases again as the wave dissipates. 

Figure 6 depicts the numerically computed (solid 
line) and the long-time asymptote (dots) for the tem- 
perature, T/A, as a function of  distance (y) for t = 20, 
100 and 500. Observe the thermal boundary layer in 
the vicinity of  the solid wall where the temperature 
drops sharply from the wall value of  A to almost 
zero. The thickness of  the boundary layer increases in 



1336 Y. HUANG and H. H. BAU 

t0-1 ' , , , 1  , , , , T r , ,  ' ' ' ' ' ' ' 1  T , r , , , , ,  

~"",,, , ,~.. O T = 0  7 
X 7- = O, long t ime asympto te  

6 ~ ~ ,A 1 - = 1 5 0  
5 = 

___P 4 
A 

3 

2 

10-2 ~ I I J I I I I ~ I I I I I L I I I I I i I I I I I I 

2 3 4 2 5 4 2 3 4 1 04 1 05 " 06 1 07 
t 

Fig. 4. The normalized pressure wave's amplitude is depicted as a function of time for a TAC wave resulting 
from a change in the wall's temperature with r = 0, 130 and 1000. The solid line and xs correspond, 
respectively, to 'exact' numerical and asymptotic (only for T = 0) results. The lines are curve fits through 

the computed points. 
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Fig, 5. The normalized velocity resulting from a step change in wall temperature is depicted as a function 
ofy for times t = 0.1, 0.5, 1,4, 10, 30, 50 and 100. The solid, dotted and dashed lines describe, respectively, 

numerical results, long-time asymptote, and short-time asymptotes. 

p ropor t ion  to x / e ' t * ,  where e* is the thermal  diffu- 
sivity of  the gas. The tempera ture  ' h u m p '  propagates  
at the speed of  sound. 

Fo r  example,  if  the med ium under  cons idera t ion  
consists of n i t rogen originally at  STP, the nomina l  
speed of  sound a* = 332 m s -  ~. The nondimens iona l  
t ime t -- 10 ~ and  distance y - 103 correspond,  respec- 
tively, to 0.2 #s and  70 #m. The wave speed, calculated 
from the distance covered by the pressure ' h u m p '  in a 
given time, is approximate ly  ~ 350 m s -  ~. For  A = 1, 
the first pressure peak depicted in Fig. 3 is approxi-  
mately 40 kPa  in magni tude.  

The wall heat  flux as a funct ion of  t ime is depicted 
in Fig. 7 (z = 0). The solid, dot~clashed, and  dot ted 
lines correspond,  respectively, to the numerical  solu- 
t ion, the long-t ime asymptote ,  and  the shor t - t ime 

asymptote .  The heavy, dashed line describes the heat 
flux due to conduc t ion  in an  incompressible medium. 

8. LINEAR TAC WAVES RESULTING FROM A 
GRADUAL CHANGE IN WALL TEMPERATURE 

(T > 0) 

In this section, we compute  the TAC waves when 
the wall is subjected to a gradual  tempera ture  change 
[equation (35), r > 0]. Figure 7 depicts the wall heat  
flux as a funct ion of  time (t) for ~ = 0, 1, 5, 13 and  
130. When  v > 0, Tw(0) = 0 and  the wall heat  flux 
q(0) = 0. This is in cont ras t  to the case of  the step 
change (v = 0), where q ( 0 ) =  oc. As t increases 
(~ > 0), the wall heat  flux initially increases, a t ta ins  a 
max imum at t ~ r, and  then declines. The initial 



Thermoacoustic waves in a semi-infinite medium 1337 

0..35 . . . . . . . . . . . .  ~ . . . .  

T 0.25 . - -  EXACT 

~ -  0.20 

0.10 t 0 
100 

0.00 , ~ , , i ~ , , , T ,  l ~  . . . . . .  i i , ,~ 
6 2 ,3 4 5 6 2 3 4 5 6 

1 01 1 02 

Fig. 6. The normalized temperature distribution resulting from a step change in the medium's wall 
temperature is depicted as a function of y for times t = 20, 100 and 500. The solid curves and the dots 

represent, respectively, numerical results and long-time asymptotes. 
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Fig. 7. The wall heat flux is depicted as a function of time for wall time constants ~ = 0, 1, 5, 13 and 
130. The solid ('exact' numerical results), dot~tashed (long-time asymptote) and the dotted (short-time 
asymptote) lines depict the heat flux induced by the TAC wave. The heavy dashed line corresponds to heat 

flux induced by conduction alone. 

increase in the heat  flux is due to the increase in the 
wall temperature .  The  subsequent  decline is caused by 
the th ickening of  the the rmal  bounda ry  layer. A simi- 
lar t rend is exhibi ted by the conduct ive  heat  flux. For  
large t/r, the heat  fluxes for the cases of  ~ > 0 and  
r = 0 converge to the same asymptote .  The long-t ime 
asymptote  predicts quali tat ively correct  behav ior  even 
for shor t  times. Fo r  z > 13 and  for all t, the dis- 
crepancy between the numerical  solut ion and  the long- 
t ime asymptote  is smaller  than  15%. 

At  nond imens iona l  t ime t = 6500, Fig. 8 depicts 
the shape of  the pressure wave as a funct ion of  the 
coordina te  y for t ime cons tants  ~ = 0 (step-change),  
13, 130, 1300 and  13 000. W h e n  the med ium is ni t ro-  
gen at STP, ~ = 1 corresponds  to 0.2 ns. As the t ime 
cons tan t  z increases, the pressure peak broadens ,  its 

magni tude  decreases, and  its locat ion moves  closer to 
the wall. The distance between the locat ions of  the 
pressure peaks  generated by a sudden (~ = 0) and  
gradual  (z > 0) wall heat ing is approximate ly  z. The 
effect of  the t ime cons tan t  ~ on  the wave ampl i tude  is 
felt only for a limited time. Fo r  example,  there is only 
a very slight difference ( <  2%)  between the pressure 
wave for z = 13 (r/t = 2 x 10 -3) and  z = 0. This is 
because the pressure wave result ing f rom a step change 
(~ = 0) is na r rower  and  taller than  the one when  z > 0. 
Therefore,  the former  will decay faster t han  the latter. 
This  s i tuat ion is i l lustrated in Fig. 4, where we! depict 
the ampl i tude  of  the pressure pulse as a funct ion of  y 
for z = 0, 130 and  1000, As t/r increases, the:curves 
with • > 0 app roach  asymptot ical ly  the one which 
cor responds  to z - - 0 .  In summary ,  at  large y and  
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Fig. 8. The shape of the normalized pressure wave is depicted as a function of y for various wall heating 
rates r = 0, 13, 130, 1300 and 13000 at t = 6500. 

t/r, TAC waves generated by a gradual (r > 0) wall 
heating induced at t = 0 will behave similarly to the 
ones generated by a sudden (T = 0) wall heating 
induced at t ~ r. 

9, NONLINEAR EFFECTS 

Thus far we have investigated linear waves. The 
linear analysis is strictly valid only for small amplitude 
waves, i.e. Ae ~'~0) << 1, where r0 is estimated later in 
this section. Our objective is to examine the effect of  
nonlinearities on the wave characteristics and deter- 
mine the range of validity of the linear approximation. 

To this end, we solved the nonlinear equations (1) 
(6) with temperature-dependent viscosity and thermal 
conductivity, We omitted the viscous dissipation term 
from equation (3) since, as we show later, in most 
practical situations, this term can be neglected. We 
approximated the nondimensional  viscosity and ther- 
mal conductivity by if(T) = clx/T+c2 and k(T) = 
c~x/T+c4. Unless otherwise stated, the results 
presented below are for nitrogen at T* = 300 K, 
cl = 1.489, c~ = -0 .489 ,  c~ = 1.66, c4 = - 0 . 6 6  [17], 
and Pr = 0.75. 

9.1. The nonlinear numerical codes and their t,er(~cation 
Two different numerical codes were employed to 

simulate the nonlinear TAC waves. The first numeri- 
cal algorithm, denoted FD, consisted of a finite 
difference, implicit, Crank-Nicolson scheme modified 
with Galerkin finite element interpolation in space 
[23]. The convective derivatives were approximated 
with a truncation error O(At 2, Ay4), where Ay and At 
are, respectively, space and time steps. The diffusive 
terms were approximated using central differences to 
O(Ay2). Thus, the scheme is O(At:, Ay z) accurate. 

The second code was PDE2D [24, 25], which is a 
second-order accurate, general purpose, multi-dimen- 
sional solver for differential equations. Although both 
codes are uncondit ionally stable, to achieve the 

desired high precision, fairly small time steps were 
required. Consequently, the FD/PDE2D com- 
putations were restricted to relatively short times, i.e. 
t < 104. Not surprisingly, being one-dimensional, FD 
was significantly faster than the two-dimensional 
simulations with PDE2D. Therefore, most of our cal- 
culations were carried out with FD. 

We verified FD and PDE2D by demonstrating the 
grid-size independence of the results, obtaining a good 
agreement between F D  and PDE2D results, and com- 
puting linear TAC waves and comparing the results 
with the ones obtained by the inverse Laplace trans- 
form method (ILT). The relative difference between 
the various predictions (i.e. FD and ILT) was 
measured with the norm, 

%ILT FD(t) 

f J (P,Lv(V, t)-- PHi(Y, t)) 2 dy 

i * (PILT(.|', 1)) 2 d v 

L 2 

(38) 

For example, using FD with {Ay. At l 
[0.065, 0.01 }, we obtained [X~LV- VD (6500) ~ 10-4] for 
a pressure wave generated by a step change in the wall 
temperature (r = 0). Due to limitations of computer 
power, it was not always feasible to maintain such 
small time and space increments. For any other selec- 
tion of time and space increments, we first solved the 
linear problem and verified the existence of a good 
agreement between FD (PDE2D) and ILT solutions. 
For  the same choice of time and spatial steps, both FD 
and PDE2D yielded similar results. Further  details on 
the verification and performance of FD and PDE2D 
are available in ref. [19]. 

9.2. The characteristics ~?[nonlinear waves 
In this subsection, we compare the characteristics 

of linear waves (LWs), nonlinear waves with tern- 
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perature-independent properties (NLWTIs) ,  and non-  
linear waves with temperature-dependent properties 
(NLWTDs).  The effects of the various nonlinearities 
are examined in Fig. 9. At t = 2600, the pressure wave 
P/A is depicted as a function of y. Data  is presented 
for a linear wave (dashed line, ILT, solid line, FD,  
and solid triangles, PDE2D) ; for a nonlinear  wave 
with temperature-independent properties when A = 1 
(thin, dotted line, FD) and A = 2 (thin, long dashed 
line, FD) ; and for a nonlinear wave with temperature- 
dependent properties when A = 1 (heavy dotted line, 
FD and solid circles, PDE2D) and A = 2 (heavy 
dashed line, F D  and squares, PDE2D).  Both F D  and 
PDE2D used Ay = 6.5 and At = 0.1. 

The various numerical schemes employed yielded 
similar results. For  the linear wave, the FD, PDE2D, 
and ILT results are in a good agreement. The height 
of the F D  and PDE2D peaks is slightly (,~ 2%) lower 
than that of  the ILT peak. )~LT--FD = 5 × 10 -3 and 
)~Fr~--PDE2D "~ 3 × 10 -3. In the case of the NLWTD,  we 
have ~FD-PDE2D ~ 4 x 10 - 3  and ~FD--PDE2D ~ 7 x 10 - 3  

when A = 1 and 2, respectively. PDE2D appears to 
suffer from a slightly larger numerical dissipation than 
FD. Nevertheless, considering the fact that PDE2D 
is a general purpose, multi-dimensional program, its 
performance is quite impressive. 

Next, we examine the effects of the various non-  
linearities on the characteristics of the waves. The 
NLWTI  propagate slightly faster and are shorter than 
their linear counterparts. This can be attributed to 
the convection increasing the temperature penetration 
depth into the medium and reducing the magnitude 
of the temperature peak. The larger A is, the faster 
the NLWTI  moves. Doubl ing A increases the wave 
peak by only ~ 80%. 

The NLWTDs  are taller and move faster than the 
NLWTIs.  The N L W T D ' s  larger amplitude is because 
the gas thermal diffusivity and conductivity increase 
with temperature. The increase in the magnitude of 
the diffusivity leads to a faster penetration of the tem- 
perature front into the gas which, in turn, leads to a 
higher peak ( ~ 2 5 % )  and a faster wave speed 
( ~  1.6%) than was the case for the NLWTI.  The effect 
of the temperature-dependent properties is in- 
sufficient, however, to counteract the effect of the con- 
vective terms. Thus, the peaks of the N L W T D s  are 
still shorter than those of the corresponding linear 
waves. Doubl ing A increased the peak height of the 
N L W T D  by about  85%. 

Figure 10 depicts the ILT (solid line) and F D  
(broken line) waves generated by a step change in the 
wall temperature (r = 0) as functions o fy  for various 
times. The heavy dashed line, dotted line, and light 
dashed line represent LW, N L W T D  with A = 1, and 
N L W T D  with A = 2, respectively. The FD grid 
spacing was increased gradually from {Ay, At} = 
{0.4,0.01} at t = 2 6 0  to {Ay, At} = {6.5,0.1} at 
t = 5200. The adequacy of the grid spacing is demon- 
strated by the good agreement between the ILT and 
FD results for the linear waves. 

Figure 10 illustrates that the NLWTDs  have a simi- 
lar shape to that of the linear ones : sharp front fol- 
lowed by a gradual decline. The NLWTDs  are shorter 
than their linear counterparts. The doubling of A 
results in less than doubling of the peak's height. 

The NLWTDs  propagate at a slightly higher speed 
than the linear waves. Figure 11 depicts the wave 
speed, a, as a function of time for a linear wave and 
NLWTDs  with A = 1 and 2. The wave speed was 
determined by dividing the distance between the fronts 
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Fig. 9. At t = 2600, the pressure wave P/A is depicted as a function of y. Data is presented for a linear 
wave, LW (dashed line, ILT, solid line, FD, and solid triangles, PDE2D); for a nonlinear wave with 
temperature-independent properties, NLWTI, when A = 1 (thin, dotted line, FD) and A = 2 (thin, long 
dashed line, FD) ; for a nonlinear wave with temperature-dependent properties, NLWTD, when A = 1 
(heavy dotted line, FD and solid circles, PDE2D), and A = 2 (heavy dashed line, FD and squares, PDE2D). 
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Fig. 10. As functions of), and at times t = 260, 520, 780, 1300, 2600, 3900 and 5200, P/A generated by a 
step change in the wall temperature (r = 0) is depicted as a function of time. ILT and FD results are shown 
with solid and broken lines, respectively. The heavy dashed line, dotted line, and light dashed line represent 

LW, NLWTD with A = 1, and NLWTD with A = 2, respectively. 

of  two peaks by the difference of  the times at which 
the two peaks were computed.  The location of  the 
front was defined as the y coordinate of  a point at 1/3 
of  the peak's height. At short times, the wave speeds 
are larger than that of  the sonic speed in the undis- 
turbed medium (a = 1). As A increases, so does the 
N L W T D ' s  speed. As time increases, the speeds of  
both the N L W T D ' s  and the LW's  approach asymp- 
totically the speed of  sound in the undisturbed 
medium. 

In Fig. 12, we compare the rate of  decay of  the LWs 
and NLWTDs .  The figure depicts the magnitude of  
the pressure peak as a function o f y  for an LW (solid 
circles, ILT and open circles, FD)  and N L W T D s  with 
A = 0.2 (x), A = 1 (solid triangle), and A = 2 (open 
triangle). The linear pressure peak's magnitude is pro- 
portional to y-n, where fl = ¼. The nonlinear waves 
decay faster than their linear counterparts.  When 
A = 0.2, we observe a gradual transition from 
fl ~ 0.28 (y < 4 x 103) to fl ~ 0.25 (y > 6 x 103). 
When A = 1 and A = 2, fl ~ 0.3 and 0.31, respec- 
tively. 

1.2 
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1.08 
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t 

Fig. 11. The wave speed, a, is depicted as a function of time 
for a linear wave and NLWTDs with A = 1 and 2. 

We speculate that for sufficiently large y, .v > )'A 
say, the nonlinear waves will behave like linear ones. 
The magnitude ofyA is likely to increase as A increases. 
Such behavior was observed for A = 0.2, but not for 
A = 1 and A = 2. This is perhaps because, in the latter 
cases, due to computer  time limitation, we were not 
able to carry out the calculations for sufficiently large 
y values. 

At t = 100, Fig. 13 depicts, as a function of) ' ,  the 
temperature distribution next to the heated wall sub- 
jected to a sudden change (r = 0) in wall temperature 
(A = 1) at t = 0. The heavy dashed and dotted lines 
describe, respectively, EW and nonlinear N L W T D  
waves. The heavy dotted and dashed lines correspond 
to conduction solutions in an incompressible medium 
with temperature-independent and temperature- 
dependent thermophysical properties. The linear 
wave's thermal boundary layer is thinner than the 
linear conduction's  one because the conduction solu- 
tion neglects gas expansion and the conversion of  heat 
into work. Because of  the increase in the magnitude 
of  thermophysical properties with temperature, the 
thickness of  the boundary layers associated with 
N L W T D s  and nonlinear conduction are thicker than 
those associated with their linear counterparts. 
Finally, the boundary layer of  the N L W T D  is thicker 
than that of  nonlinear conduction due to the effect of  
convection (which is not accounted for by the LW). 

The wall heat flux resulting from a step change in 
wall temperature (r = 0) and A = 1 is depicted as a 
function of  time in Fig. 14. Results are given for linear 
conduction (dashed-dot  line) in an incompressible 
medium;  nonlinear conduction (dotted line) in an 
incompressible medium;  LW (solid line, ILT, and 
heavy dashed line, FD)  ; and N L W T D  (long dashed 
line). Due to the sudden increase in the wall tempera- 
ture, in all cases, the heat flux at t = 0 is infinite. This 
singularity causes numerical oscillations when one is 



Thermoacoustic waves in a semi-infinite medium 1341 

? 

6 

5 

4 I i i i i i i I i i i i i i i i J 

3 4 5 6 2 3 4 $ 6 
103 1 0 4 

y 

Fig. 12. The magnitude of the pressure peak is depicted as a function of y for an LW and NLWTDs with 
A = 0.2 ( x ), A = 1 (solid triangle), and A = 2 (open triangle). 
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Fig. 13. At t = 100, the temperature distribution next to the heated wall is depicted as a function ofy. The 
wall was subjected to a sudden change (z = 0) in temperature (A = 1) at t = 0. The heavy dashed and 
dotted lines describe, respectively, LW and NWLTD. The heavy dotted and dashed lines correspond 
to conduction solutions in an incompressible medium with temperature-independent and temperature- 

dependent thermophysical properties. 

computing short-time heat fluxes with F D  and 
PDE2D.  The durat ion of  these oscillations can be 
reduced, but not  eliminated, by reducing At. We com- 
puted the  heat flux with At ranging from 0.001 to 0.1 
and obtained the same results for t > 1. A more 
elegant means of  eliminating the singularity problem 
at t = 0 would be to endow the wall with a small time- 
constant (z > 0). 

The heat flux associated with the LW is higher (by 
a factor of  ~/7) than the constant-property con- 
duction in an incompressible medium, but slightly 
lower than the conductive flux when the temperature 
dependence of  thermophysical properties is accounted 
for. This is, of  course, because the gas' conductivity 
increases with temperature. At  short times, such as 
t < 20 (see figure insert), due to the contribution of  
convection the heat flux associated with N L W T D s  

was higher than that of  conduction with temperature- 
dependent properties as well as the LW. As time goes 
by, however, the thickness of  the N L W T D ' s  thermal 
boundary layer increases faster than in the absence of  
TAC waves, which, in turn, leads to a reduction in the 
heat flux below that of  pure conduction. 

9.3. The range o f validity of the linear approximation 
The importance of  nonlinear effects depends on the 

magnitude of  A. Fo r  example, for A < 0.2 and z = 0, 
2LW-NLWrD(t) < 0.05 for 0 < t < 103. In other words, 
when A < 0.2 and z = 0, the linear approximation will 
render results with a 5% error or smaller. 

As ~ increases, the amplitude of  the T A C  wave 
decreases. Thus, waves with large ~ should behave like 
linear waves. The effect of  z is examined in Fig. 15. At  
t = 200, Fig. 15 depicts the LWs (heavy lines) and 
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Fig. 14. The wall heat flux resulting from a step change in wall temperature (r = 0) when A = 1 is depicted 
as a function of time. Results are given for linear (dashed~zlot line) and nonlinear conduction (dotted line) 

and for LW (solid line, ILT, and heavy dashed line, FD) and NLWTD (long dashed line). 
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Fig. 15. At t = 200, P/A is depicted as a function of) '  for z = 0 (solid line), 10 (dots), 50 (long dashed 
line), 100 (short dashed line) and 200 (dashed-dot line) and A = 1. LWs and NLWTDs are shown. 

respectively, as heavy and light lines. 

N L W T D s  (light lines) as functions o f  y for r = 0 
(solid line), 10 (dots),  50 ( long dashed line), 100 (short 
dashed line), and 200 (dashed~ lo t  line) and A --- 1. 
As ~ increases, the difference between the LWs and 
the N L W T D s  decreases. The differences between the 
LWs and the N L W T D s  are shown in Fig. 16, which 
depicts ZLW.NLWTD(t = 2 0 0 ;  z) as  a function o f  the 
t ime-constant,  r. The curve was approximated (solid 
line) by a correlation o f  the form i ( ( t ;r )  
csAe -"/~o), where c s = 0 . 3 6 4  and T 0 = 5 0 .  For 
example,  for A = 1 and r > 100, the linear approxi-  
mation will cause an error smaller than 5%. 

The expression given above is valid only for A = 1, 
and it is risky to generalize this result For all A values. 
Nevertheless,  as the time constant  increases, the error 

0.4 

X 0.2 

0.t  

50 t00  t50  200 

Fig. 16. ZLw NLWTD(t = 2 0 0 ; 0  is depicted as a function of  
the time-constant, • ; A = 1. 



Thermoacoustic waves in a semi-infinite medium 1343 

incurred in using the linear approximation decreases. 
In many practical situations, r is quite large. For 
example, in Brown's [11] experiments, z ~ 105. Thus, 
in many cases of practical importance, the linear 
approximation should be adequate. 

The importance of nonlinear effects also diminishes 
as y increases. Asymptotic analysis suggests that the 
nonlinear, normalized contributions, 

and 

~v\/fOp\ 

~ T \ / f d p \  

are approximately Ay ~/4. Thus, for the convective 
terms to be smaller than 2% of the other terms in the 
equation, we need y > (50A)4. For example, when 
A = 0.2, we would expect to observe linear behavior 
for y > 104, which is consistent with the observations 
made in Fig. 12. 

The fact that the wave behaves linearly for large y 
values suggests the possibility of employing the FD 
scheme to obtain solutions for relatively small values 
ofy and subsequently employing ILT for larger y with 
the FD results providing initial conditions for the ILT 
scheme. 

Finally, we estimated the importance of the viscous 
dissipation term. For y ~ 6000, we find 

~yJ 
- -  < 5 x 10-4A. 

Thus, in most cases of practical interest, the viscous 
dissipation can safely be neglected. 

9.4. Comparison with previous nonlinear solutions 
We compared our results with those of refs. [4, 5, 

7, 8], all of whom employed finite differences with con- 
vective terms approximated by a first-order upwinding 
scheme and assumed temperature-independent thermo- 
physical properties and no viscous dissipation. For 
illustration purposes, we show in Fig. 17 Ozoe et 
al.'s (ref. [8], Fig. 2) computed first peak (dotted line) 
of the pressure wave as a function of time at distance 
0.0765 m from a heated wall (A = 1). Ozoe et al.'s 
calculations were performed for helium (7 = 1.66, 
Pr = 0.71) with At ~ 5.9 x 104 and Ay ~ 9.5 x l 0  4 (in 
our nondimensional units). Due to computer power 
limitations, we were not able to carry out the nonlinear 
computations (with desired precision) for such large 
y values. Instead, we present in Fig. 17 our results for 
the linear wave (solid line) with 7 = 1.66 and a slightly 
different Prandtl number, 0.75 instead of 0.71. In 
order to facilitate comparison, we shifted the time axis 
of Ozoe et al.'s data so that the location of their 
pressure peak coincides with ours. This shift was 

necessary, since their wave traveled at approximately 
twice the speed of sound, while our wave traveled at 
approximately the speed of sound in helium. Ozoe et 
al.'s pressure peak travels much faster, is much 
broader, has almost symmetric shape with respect to 
the point where the peak attains its maximum, has a 
smaller amplitude than our peak, and does not have 
the sharp front characteristic of TAC waves. 

We believe that the difference between Ozoe et al.'s 
nonlinear wave and our linear one cannot be explained 
by nonlinearities and is a result of numerical dis- 
sipation and dispersion, and a lack of sufficient grid 
resolution. In the next section, we will further support 
this view by demonstrating that our results are in good 
agreement with experimental observations. 

10. COMPARISON WITH EXPERIMENTS 

We compare our theoretical results with Brown's 
[11] experimental data. Brown induced TAC waves 
in a 0.6 m long, closed, nitrogen-filled, plastic tube 
mounted vertically on a thin metal foil supported from 
below by a section of fibrous, ceramic insulation. The 
foil was heated rapidly by a RC circuit and then 
allowed to cool by heat losses to the environment. The 
foil's temperature as a function of time was measured 
with the aid of a thermocouple. We closely approxi- 
mated Brown's foil temperature data as given in his 
thesis [11] using the correlation: 

r w ( t )  = 

f 
l.691[1 - e  ~'*"~)] 

t* ~ 2.8× l0 n 3 s 

0 .209-  2.455e-"*/T~) + 2.242 e ,*~V 

t* > 2.8× 10-3 s 

(39) 

where z* =0.15 ms (zL ~ 10s), z* = 1.35 ms, and 
r~' = 12.6ms. T,(t) ,  as given by equation (39), is 
depicted in Fig. 18. As a result of the heating, a TAC 
wave was generated and reverberated inside the tube. 
The induced pressure wave was measured with a 
microphone located at a distance of 0.305 m from the 
foil. 

Since the theory presented here is applicable only 
for a semi-infinite medium while Brown's experiment 
was conducted in a bounded medium, we are able to 
predict only the first peak in his pressure measure- 
ments. The computations were carried out for the wall 
temperature given in equation (39). Due to computer 
power limitations, we were not able to compute non- 
linear results for the time length required for com- 
parison with experiments. Fortunately, given the large 
zt value, the wave should behave linearly (Section 
9.3). The ILT-predicted pressure (solid line) and the 
measured pressure (circles) at the microphone's 
location are depicted as functions of time (ms) in Fig. 
18. The computed and measured pressure waves have 
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Fig. 17. Our ILT (solid line) and Ozoe et al.'s [8] numerical (dotted line) pressure waves are depicted as 

functions of time ; A = 1. 

a similar shape: a sharp front and a long 'tail ' .  The 
computed ascending part of  the wave is in excellent 
agreement with the measurements. In the wave's trail, 
the computed pressure drops somewhat slower than 
the measured one, We speculate that the faster decay 
of  the measured one is due to leaks in the experimental 
apparatus. Further  credence to this speculation is 
given in Huang and Bau [16], where we derived a 
theory for confined TAC waves and were able to carry 
out a more complete comparison with the experiments 
than we can do here. 

11. CONCLUSION 

Using asymptotic methods and a numerically 
inverted Laplace transform, we have studied theor- 
etically one-dimensional, linear TAC wave trans- 
mission in a semi-infinite, gaseous (Pr = 3/4) medium. 
Long- and short-time asymptotes were derived for the 
pressure, temperature, velocity waves and wall heat 
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Fig. 18. A comparison between our ILT solution (solid line) 
and Brown's [11] experimental data (circles). The pressure 
wave, detected by a microphone, is depicted as a function of 
time (s). The figure also shows the wall temperature as a 

function of time. 

flux for walls subjected to sudden and gradual changes 
in their temperature. 

The Laplace transform method used has the advan- 
tage of  being free from numerical artifacts such as 
artificial dissipation and insufficient grid resolution. 
Comparison with asymptotic solutions indicates that 
the method is highly accurate. The theoretical results 
are also in excellent agreement with experimental 
data. The results presented here can, therefore, be 
used for benchmarking other numerical codes. The 
availability of  such a benchmark is particularly impor- 
tant since the TAC wave problem is difficult to simu- 
late accurately. 

The predictions of  the linear theory were compared 
with nonlinear solutions. The nonlinear solutions, 
although highly accurate, required a great amount  of  
computer time to produce and therefore were restricted 
only to relatively short times. The nonlinear simu- 
lations demonstrated that the nonlinear waves damp 
and propagate a bit faster than their linear counter- 
parts. The conditions when the linear approximation 
is valid were assessed, and it was demonstrated that 
in many practical situations the linear approximation 
is adequate. Clearly, there is a need to develop special 
codes which can efficiently simulate nonlinear thermo- 
acoustic waves. An interesting alternative is the use of  
a hybrid scheme-  finite difference solutions for short 
times and inverse Laplace transform for long times 
with the finite difference solution providing initial con- 
ditions for the inverse Laplace transform. 
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